5月10日,创业邦研究中心在2018全球
人工智能产品应用博览会上发布了《2018中国人工智能白皮书》。据统计,2017年中国人工智能核心产业规模超过700亿元,随着各地人工智能建设的逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,年复合增长率将达31.7%。随着
人工智能技术的不断成熟,人工智能创业的难度逐步降低,越来越多的
创业公司加入人工智能的阵营。
2018年被称为人工智能爆发的元年,
人工智能技术应用所催生的商业价值逐步凸显。人工智能逐步切入到社会生活的方方面面,带来生产效率及生活品质的大幅提升。人工智能红利时代开启,资本、巨头和
企业创业公司纷纷涌入,将人工智能拉到了信息产业革命的风口。
人工智能概念及发展
自1956年达特茅斯会议提出“人工智能”概念以来,“人工智能”经历了寒冬与高潮交替的起起伏伏60多年的发展历程。2010年以后,深度学习的发展推动语音识别、图像识别和自然语言处理等技术取得了惊人突破,前所未有的人工智能商业化和全球化浪潮席卷而来。
人工智能产业链可以分为基础设施层、应用技术层和行业应用层。基础层,主要有基础数据提供商、半导体芯片供应商、传感器供应商和云服务商。技术层,主要有语音识别、自然语言处理、计算机视觉、深度学习技术提供商。应用层,主要是把人工智能相关技术集成到自己的产品和服务中,然后切入特定场景。目前来看,自动驾驶、医疗、安防、金融、营销等领域是业内人士普遍比较看好方向。
机器视觉技术
机器视觉是指通过用计算机或图像处理器及相关设备来模拟人类视觉,以让机器获得相关的视觉信息并加以理解,它是将图像转换成数字信号进行分析处理的技术。
数据、算力和算法是影响机器视觉行业发展的三要素。人工智能正在像婴儿一样成长,机器不再只是通过特定的编程完成任务,而是通过不断学习来掌握本领,这主要依赖高效的模型算法进行大量数据训练,其背后需要具备高性能计算能力的
软硬件作为支撑。
深度学习出现后,机器视觉的主要识别方式发生重大转变,自学习状态成为视觉识别主流,即机器从海量数据里自行归纳特征,然后按照该特征规律使图像识别的精准度也得到极大的提升,从70%+提升到95%。
机器视觉包括
企业软件平台开发和
软硬件一体
解决方案服务。整体用户更偏向于B端。
软件服务提供商作为技术算法的驱动者,其商业模式应以“技术层+场景应用”作为突破口。
软硬件一体化服务供应商作为生态构建者,适合以“全产业链生态+场景应用”作为突破口,加速商业化。
技术算法驱动者——“技术层+场景应用”作为突破口。这种商业模式主要是提供以工程师为主的
企业级软件服务。有海量数据支撑,构建起功能和信息架构较为复杂的生态系统,推动最末端的消费者体验。此类商业模式成功关键因素:深耕算法和通用技术,建立技术优势,同时以场景应用为入口,积累用户
软件。视觉软件服务按处理方式和存储位置的不同可分为在线API、离线SDK、私有云等。
生态构建者——“全产业链生态+场景应用”作为突破口。软硬一体化的商业模式是一种“终端+软件+服务”全产业链体系。成功的因素是大量算力投入,海量优质数据积累,建立算法平台、通用技术平台和应用平台,以场景为入口,积累用户。亮点是打造终端、操作系统、应用和服务一体化的生态系统,各部分相辅相承,锐化企业竞争力,在产业链中拥有更多话语权。
语音识别技术已趋成熟,全球应用持续升温。语音识别技术经历了长达60年的发展,近年来机器学习和深度神经网络的引入,使得语音识别的准确率提升到足以在实际场景中应用。深度神经网络逐步找到模型结构和调参算法来替代或结合高斯混合算法和HMM算法,在识别率上取得突破。根据Google Trends统计,自2008年iphoness及谷歌语音搜索推出以来语音搜索增长超35倍。百度人工智能专家吴恩达预测,2020年语音及图像搜索占比有望达到50%。Echo热销超过400万,带动智能音箱热潮。
语音识别即将进入大规模产业化时代。随着亚马逊Echo的大卖,语音交互技术催生的新商机,吸引大大小小的公司构建自己主导的语音生态产业链。各大公司纷纷开放各自的智能语音平台和语音能力,欲吸引更多玩家进入他们的生态系统。
低噪声语料下的高识别率在现实环境使用中会明显下降到70%—80%,远场识别、复杂噪声环境和特异性口音的识别是下一个阶段需要解决的问题。
麦克风阵列类前端技术不仅是通过降噪和声源定位带来识别率的提高,带环境音的语料的搜集、标注可用于模型的训练,有助于打造更新一代的语音识别引擎技术。语音巨头已经在布局。在IOT包括车载领域,云端识别并非通行的最优方案,把识别引擎结合场景进行裁剪后往芯片端迁徙是工程化发展的方向。
人工智能在医疗行业应用
人工智能在医疗行业的应用潜力巨大,目前在健康管理、辅助诊疗、虚拟助理、医学影像、智能化器械、药物挖掘和医院管理等领域均有企业在布局,其中医学影像、药物挖掘、健康管理,辅助诊疗、虚拟助理的应用发展速度较快。
医学影像。
人工智能应用于医学影像,通过深度学习,实现机器对医学影像的分析判断,是协助医生完成诊断、治疗工作的一种辅助工具,帮助更快地获取影像信息,进行定性定量分析,提升医生看图/读图的效率,协助发现隐藏病灶。人工智能通过影像分类、目标检测、图像分割、图像检索等方式,完成病灶识别与标注,三维重建,靶区自动勾画与自适应放疗等功能,应用在疾病的筛查、诊断和治疗阶段。目前较为火热的应用有肺部筛查、糖网筛查、肿瘤诊断和治疗等。
药物挖掘。人工智能在药物研发上的应用可总结为临床前和临床后两个阶段。临床前阶段:将深度学习技术应用于药物临床前研究,在计算机上模拟药物筛选的过程,包括靶点选择、药效和晶型分析等,预测化合物的活性、稳定性和副作用,快速、准确地挖掘和筛选合适的化合物或生物,提高筛选效率,优化构效关系。临床后阶段:针对临床试验的不同阶段,利用
人工智能技术对患者病历进行分析,迅速筛选符合条件的被试者,监测管理临床试验过程中的患者服药依从性和数据收集过程,提高临床试验的准确性。
虚拟助理。医疗虚拟助理是基于医疗领域的知识系统,通过
人工智能技术实现人机交互,从而在就医过程中,承担诊前问询、诊中记录等工作,成为医务人员的合作伙伴,使医生有更多时间可以与患者互动。医疗虚拟助理根据参与就医过程的功能不同,主要有智能导诊分诊,智能问诊,用药咨询和语音电子病历等方向。
人工智能在智能驾驶行业应用
伴随着ADAS技术的不断更新,推断全球L1~L5智能驾驶市场的渗透率会在接下来5年内处于高速渗透期,然后伴随半无人驾驶的普及进入稳速增长期。在未来的2025年无人驾驶放量阶段后,依赖全产业链的配合而进入市场成熟期。预测到2030年,全球L4/5级别的自动驾驶车辆渗透率将达到15%,单车应用成本的显著提升之外,从L1~L4级别的智能驾驶功能全面渗透为汽车产业带来全面的市场机会。
按照IHS Automotive保守估计,全球L4/L5自动驾驶汽车产量在2025年将接近60万辆,并在2025—2035年间获得高速发展,年复合增长率将达到43%,并在2035年达到2100万辆。另有接近7600万辆的汽车具备部分自动驾驶功能,同时会带动产业链衍生市场的大规模催化扩张。
根据独立市场调研机构Strategy Engineers的预测,L4高度自动驾驶等级下,自动驾驶零部件成本约在3100元/车,其中硬件占比45%,软件占比30%,系统整合占比14%,车联网部分占比11%。按照全球1亿辆量产规模计算,理想假设所有车辆全部达到L4高度自动驾驶水平,那么全球自动驾驶零部件市场规模在2020年将达到3100亿美元。
中国人工智能企业
全国88%的
人工智能企业聚集在北京、上海、广东和江苏。其中,北京
人工智能企业最多,占比高达39.66%;其次是上海,
人工智能企业占比达21.55%;位列第三的是广东,人工智能企业占达15.52%。北京以领先全国其他地区的政策环境、人才储备、产业基础、资本支持等,成为人工智能创业首要阵地;华东地区的上海、江苏、浙江均有良好的经济基础和科技实力,人工智能应用实力雄厚,也聚集了一批人工智能垂直产业园;广东互联网产业发达,企业对数据需求强烈,依靠大数据产业链推动人工智能产业发展。
从行业大类分布来看,行业应用层的企业占比最大,为56.03%;其次是应用技术层的企业,占比达31.04%;基础技术层的企业占比最小,仅为12.93%。随着
人工智能技术的发展,人工智能与场景深度融合,应用领域不断扩展,行业应用公司比重不断提升。在基础层技术方面,国际IT巨头占据行业领先地位,国内与国际差距明显,中小初创企业很难进入。
从行业应用来看,智能金融企业占比最大,为16.92%;其次是机器人企业,占比达15.38%;位列第三的是智能驾驶和智能教育,占比均为12.31%。金融行业的强数据导向为人工智能的落地提供了产业基础,智慧金融被列入国家发展规划中,庞大的金融市场为人工智能落地带来了发展前景。机器人作为人工智能产业落地输出,目前市场需求较大,商业机器人占据较大份额。中国智能驾驶市场在资本推动下进入者较多,企业积极推动应用落地,百度、北汽等大型企业尝试商业化落地智能驾驶汽车。人工智能推动教育个性化落地,相关初创企业涉入教育蓝海,推动智慧教育的发展。